Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Nat Genet ; 53(5): 638-649, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33859415

RESUMO

A central question in the post-genomic era is how genes interact to form biological pathways. Measurements of gene dependency across hundreds of cell lines have been used to cluster genes into 'co-essential' pathways, but this approach has been limited by ubiquitous false positives. In the present study, we develop a statistical method that enables robust identification of gene co-essentiality and yields a genome-wide set of functional modules. This atlas recapitulates diverse pathways and protein complexes, and predicts the functions of 108 uncharacterized genes. Validating top predictions, we show that TMEM189 encodes plasmanylethanolamine desaturase, a key enzyme for plasmalogen synthesis. We also show that C15orf57 encodes a protein that binds the AP2 complex, localizes to clathrin-coated pits and enables efficient transferrin uptake. Finally, we provide an interactive webtool for the community to explore our results, which establish co-essentiality profiling as a powerful resource for biological pathway identification and discovery of new gene functions.


Assuntos
Redes Reguladoras de Genes , Genes , Genoma , Clatrina/metabolismo , Endocitose , Epigênese Genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Anotação de Sequência Molecular , Neoplasias/genética , Plasmalogênios/biossíntese , Transdução de Sinais/genética
2.
Microbiologyopen ; 10(1): e1146, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319506

RESUMO

The main bottleneck in the return of industrial butanol production from renewable feedstock through acetone-butanol-ethanol (ABE) fermentation by clostridia, such as Clostridium beijerinckii, is the low final butanol concentration. The problem is caused by the high toxicity of butanol to the production cells, and therefore, understanding the mechanisms by which clostridia react to butanol shock is of key importance. Detailed analyses of transcriptome data that were obtained after butanol shock and their comparison with data from standard ABE fermentation have resulted in new findings, while confirmed expected population responses. Although butanol shock resulted in upregulation of heat shock protein genes, their regulation is different than was assumed based on standard ABE fermentation transcriptome data. While glucose uptake, glycolysis, and acidogenesis genes were downregulated after butanol shock, solventogenesis genes were upregulated. Cyclopropanation of fatty acids and formation of plasmalogens seem to be significant processes involved in cell membrane stabilization in the presence of butanol. Surprisingly, one of the three identified Agr quorum-sensing system genes was upregulated. Upregulation of several putative butanol efflux pumps was described after butanol addition and a large putative polyketide gene cluster was found, the transcription of which seemed to depend on the concentration of butanol.


Assuntos
Transporte Biológico/genética , Butanóis/toxicidade , Membrana Celular/metabolismo , Clostridium beijerinckii/efeitos dos fármacos , Clostridium beijerinckii/genética , Reatores Biológicos/microbiologia , Clostridium beijerinckii/metabolismo , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Glucose/metabolismo , Glicólise/genética , Glicólise/fisiologia , Proteínas de Choque Térmico/metabolismo , Plasmalogênios/biossíntese , Percepção de Quorum/genética , Estresse Fisiológico/genética
3.
ACS Chem Biol ; 16(1): 6-13, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33350306

RESUMO

Plasmalogens are vinyl ether-containing lipids produced by mammals and bacteria. The aerobic biosynthetic pathway in eukaryotes and bacteria is known, but the anaerobic pathway has remained a mystery. Here, we describe a two-gene operon (plasmalogen synthase, pls) responsible for plasmalogen production in the anaerobic bacterium Clostridium perfringens. While aerobic plasmalogen biosynthesis involves an oxidative conversion of an ether to a vinyl ether, anaerobic plasmalogen biosynthesis uses the reductive conversion of an ester to an aldehyde equivalent. Heterologous expression of the C. perfringens pls operon in E. coli conferred the ability to produce plasmalogens. The pls operon is predicted to encode a multidomain complex similar to benzoyl-CoA reductase/hydroxylacyl-CoA dehydratase (BCR/HAD) enzymes. Versions of this operon can be found in a wide range of obligate and facultative anaerobic bacteria, including many human gut microbes.


Assuntos
Clostridium perfringens/metabolismo , Genes Bacterianos , Óperon , Plasmalogênios/biossíntese , Clostridium perfringens/genética , Enterococcus faecalis/metabolismo , Escherichia coli/genética , Fases de Leitura Aberta , Oxirredução
4.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233525

RESUMO

We investigated the synthesis of N-docosahexaenoylethanolamine (synaptamide) in neuronal cells from unesterified docosahexaenoic acid (DHA) or DHA-lysophosphatidylcholine (DHA-lysoPC), the two major lipid forms that deliver DHA to the brain, in order to understand the formation of this neurotrophic and neuroprotective metabolite of DHA in the brain. Both substrates were taken up in Neuro2A cells and metabolized to N-docosahexaenoylphosphatidylethanolamine (NDoPE) and synaptamide in a time- and concentration-dependent manner, but unesterified DHA was 1.5 to 2.4 times more effective than DHA-lysoPC at equimolar concentrations. The plasmalogen NDoPE (pNDoPE) amounted more than 80% of NDoPE produced from DHA or DHA-lysoPC, with 16-carbon-pNDoPE being the most abundant species. Inhibition of N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) by hexachlorophene or bithionol significantly decreased the synaptamide production, indicating that synaptamide synthesis is mediated at least in part via NDoPE hydrolysis. NDoPE formation occurred much more rapidly than synaptamide production, indicating a precursor-product relationship. Although NDoPE is an intermediate for synaptamide biosynthesis, only about 1% of newly synthesized NDoPE was converted to synaptamide, possibly suggesting additional biological function of NDoPE, particularly for pNDoPE, which is the major form of NDoPE produced.


Assuntos
Ácidos Araquidônicos/biossíntese , Ácidos Docosa-Hexaenoicos/metabolismo , Endocanabinoides/biossíntese , Etanolaminas/metabolismo , Lisofosfatidilcolinas/metabolismo , Neurônios/metabolismo , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/isolamento & purificação , Bitionol/farmacologia , Isótopos de Carbono , Linhagem Celular Tumoral , Cromatografia Líquida , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/isolamento & purificação , Etanolaminas/antagonistas & inibidores , Etanolaminas/isolamento & purificação , Hexaclorofeno/farmacologia , Cinética , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Plasmalogênios/antagonistas & inibidores , Plasmalogênios/biossíntese , Plasmalogênios/isolamento & purificação , Alcamidas Poli-Insaturadas/antagonistas & inibidores , Alcamidas Poli-Insaturadas/isolamento & purificação , Espectrometria de Massas em Tandem
5.
J Inherit Metab Dis ; 43(5): 1046-1055, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32441337

RESUMO

Plasmalogens (Pls) are a class of membrane phospholipids which serve a number of essential biological functions. Deficiency of Pls is associated with common disorders such as Alzheimer's disease or ischemic heart disease. A complete lack of Pls due to genetically determined defective biosynthesis gives rise to rhizomelic chondrodysplasia punctata (RCDP), characterized by a number of severe disabling pathologic features and death in early childhood. Frequent cardiac manifestations of RCDP include septal defects, mitral valve prolapse, and patent ductus arteriosus. In a mouse model of RCDP, reduced nerve conduction velocity was partially rescued by dietary oral supplementation of the Pls precursor batyl alcohol (BA). Here, we examine the impact of Pls deficiency on cardiac impulse conduction in a similar mouse model (Gnpat KO). In-vivo electrocardiographic recordings showed that the duration of the QRS complex was significantly longer in Gnpat KO mice than in age- and sex-matched wild-type animals, indicative of reduced cardiac conduction velocity. Oral supplementation of BA for 2 months resulted in normalization of cardiac Pls levels and of the QRS duration in Gnpat KO mice but not in untreated animals. BA treatment had no effect on the QRS duration in age-matched wild-type mice. These data suggest that Pls deficiency is associated with increased ventricular conduction time which can be rescued by oral BA supplementation.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Condrodisplasia Punctata Rizomélica/tratamento farmacológico , Éteres de Glicerila/farmacologia , Plasmalogênios/biossíntese , Administração Oral , Animais , Arritmias Cardíacas/etiologia , Condrodisplasia Punctata Rizomélica/fisiopatologia , Suplementos Nutricionais , Modelos Animais de Doenças , Eletrocardiografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Éteres Fosfolipídicos/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-32126285

RESUMO

In Barth syndrome (BTHS) mutations in tafazzin leads to changes in both the quantities and the molecular species of cardiolipin (CL), which are the hallmarks of BTHS. Contrary to the well-established alterations in CL associated with BTHS; recently a marked decrease in the plasmalogen levels in Barth specimens has been identified. To restore the plasmalogen levels, the present study reports the effect of promotion of plasmalogen biosynthesis on the lipidome of lymphoblasts derived from Barth patients as well as on cell viability, mitochondria biogenesis, and mitochondrial membrane potential. High resolution 31P NMR phospholipidomic analysis showed an increase in the levels of plasmenylethanolamine (the major plasmalogen in lymphoblasts), which reached values comparable to the control and a compensatory decrease in the levels of its diacyl-PE counterpart. Importantly, 31P NMR showed a significant increase in the levels of CL, while not altering the levels of monolysocardiolipin. Mass spectrometry measurements showed that the promotion of plasmalogen biosynthesis did not change the molecular species profile of targeted phospholipids. In addition, promotion of plasmalogen biosynthesis did not impact on cellular viability, although it significantly decrease mitochondria copy number and restored mitochondrial membrane potential. Overall, the results showed the efficacy of the promotion of plasmalogen biosynthesis on increasing the CL levels in a BTHS cell model and highlight the potential beneficial effect of a diet supplemented with plasmalogen precursors to BTHS patients.


Assuntos
Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Éteres de Glicerila/metabolismo , Linfócitos/metabolismo , Lisofosfolipídeos/metabolismo , Plasmalogênios/biossíntese , Aciltransferases , Síndrome de Barth/sangue , Síndrome de Barth/dietoterapia , Síndrome de Barth/genética , Cardiolipinas/análise , Sobrevivência Celular , Células Cultivadas , Criança , Pré-Escolar , Gorduras na Dieta , Suplementos Nutricionais , Éteres de Glicerila/administração & dosagem , Humanos , Lactente , Mutação com Perda de Função , Linfócitos/citologia , Lisofosfolipídeos/análise , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Biogênese de Organelas , Cultura Primária de Células , Fatores de Transcrição/genética
7.
Science ; 366(6461): 128-132, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31604315

RESUMO

Plasmalogens are glycerophospholipids with a hallmark sn-1 vinyl ether bond. These lipids are found in animals and some bacteria and have proposed membrane organization, signaling, and antioxidant roles. We discovered the plasmanylethanolamine desaturase activity that is essential for vinyl ether bond formation in a bacterial enzyme, CarF, which is a homolog of the human enzyme TMEM189. CarF mediates light-induced carotenogenesis in Myxococcus xanthus, and plasmalogens participate in sensing photooxidative stress through singlet oxygen. TMEM189 and other animal homologs could functionally replace CarF in M. xanthus, and knockout of TMEM189 in a human cell line eliminated plasmalogens. Discovery of the human plasmanylethanolamine desaturase will spur further study of plasmalogen biogenesis, functions, and roles in disease.


Assuntos
Myxococcus xanthus/enzimologia , Oxirredutases/metabolismo , Plasmalogênios/biossíntese , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Linhagem Celular , Humanos , Luz , Oxirredutases/química , Oxirredutases/genética , Plantas/enzimologia , Plasmalogênios/metabolismo , Transdução de Sinais , Oxigênio Singlete/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Compostos de Vinila/química
8.
J Biochem ; 166(5): 423-432, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31236591

RESUMO

Ether glycerolipids, plasmalogens are found in various mammalian cells and tissues. However, physiological role of plasmalogens in epithelial cells remains unknown. We herein show that synthesis of ethanolamine-containing plasmalogens, plasmenylethanolamine (PlsEtn), is deficient in MCF7 cells, an epithelial cell line, with severely reduced expression of alkyl-dihydroxyacetonephosphate synthase (ADAPS), the second enzyme in the PlsEtn biosynthesis. Moreover, expression of ADAPS or supplementation of PlsEtn containing C18-alkenyl residue delays the migration of MCF7 cells as compared to that mock-treated MCF7 and C16-alkenyl-PlsEtn-supplemented MCF7 cells. Localization of E-cadherin to cell-cell junctions is highly augmented in cells containing C18-alkenyl-PlsEtn. Together, these results suggest that PlsEtn containing C18-alkenyl residue plays a distinct role in the integrity of E-cadherin-mediated adherens junction.


Assuntos
Junções Aderentes/metabolismo , Plasmalogênios/metabolismo , Humanos , Células MCF-7 , Plasmalogênios/biossíntese , Células Tumorais Cultivadas
9.
J Lipid Res ; 59(5): 901-909, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29540573

RESUMO

Plasmanylethanolamine desaturase (PEDS) (EC 1.14.99.19) introduces the 1-prime double bond into plasmalogens, one of the most abundant phospholipids in the human body. This labile membrane enzyme has not been purified and its coding sequence is unknown. Previous assays for this enzyme used radiolabeled substrates followed by multistep processing. We describe here a straight-forward method for the quantification of PEDS in enzyme incubation mixtures using pyrene-labeled substrates and reversed-phase HPLC with fluorescence detection. After stopping the reaction with hydrochloric acid in acetonitrile, the mixture was directly injected into the HPLC system without the need of lipid extraction. The substrate, 1-O-pyrenedecyl-2-acyl-sn-glycero-3-phosphoethanolamine, and the lyso-substrate, 1-O-pyrenedecyl-sn-glycero-3-phosphoethanolamine, were prepared from RAW-12 cells deficient in PEDS activity and were compared for their performance in the assay. Plasmalogen levels in mouse tissues and in cultured cells did not correlate with PEDS levels, indicating that the desaturase might not be the rate limiting step for plasmalogen biosynthesis. Among selected mouse organs, the highest activities were found in kidney and in spleen. Incubation of intact cultivated mammalian cells with 1-O-pyrenedecyl-sn-glycerol, extraction of lipids, and treatment with hydrochloric or acetic acid in acetonitrile allowed sensitive monitoring of PEDS activity in intact cells.


Assuntos
Cromatografia Líquida de Alta Pressão , Oxirredutases/análise , Plasmalogênios/química , Pirenos/química , Espectrometria de Fluorescência , Compostos de Vinila/química , Animais , Células Cultivadas , Camundongos , Estrutura Molecular , Oxirredutases/deficiência , Oxirredutases/metabolismo , Plasmalogênios/biossíntese , Pirenos/metabolismo , Especificidade por Substrato , Compostos de Vinila/metabolismo
10.
Biochemistry ; 57(14): 2162-2175, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29557170

RESUMO

Tafazzin is the mitochondrial enzyme that catalyzes transacylation between a phospholipid and a lysophospholipid in remodeling. Mutations in tafazzin cause Barth syndrome, a potentially life-threatening disease with the major symptom being cardiomyopathy. In the tafazzin-deficient heart, cardiolipin (CL) acyl chains become abnormally heterogeneous unlike those in the normal heart with a single dominant linoleoyl species, tetralinoleoyl CL. In addition, the amount of CL decreases and monolysocardiolipin (MLCL) accumulates. Here we determine using high-resolution 31P nuclear magnetic resonance with cryoprobe technology the fundamental phospholipid composition, including the major but oxidation-labile plasmalogens, in the tafazzin-knockdown (TAZ-KD) mouse heart as a model of Barth syndrome. In addition to confirming a lower level of CL (6.4 ± 0.1 → 2.0 ± 0.4 mol % of the total phospholipid) and accumulation of MLCL (not detected → 3.3 ± 0.5 mol %) in the TAZ-KD, we found a substantial reduction in the level of plasmenylcholine (30.8 ± 2.8 → 18.1 ± 3.1 mol %), the most abundant phospholipid in the control wild type. A quantitative Western blot revealed that while the level of peroxisomes, where early steps of plasmalogen synthesis take place, was normal in the TAZ-KD model, expression of Far1 as a rate-determining enzyme in plasmalogen synthesis was dramatically upregulated by 8.3 (±1.6)-fold to accelerate the synthesis in response to the reduced level of plasmalogen. We confirmed lyso-plasmenylcholine or plasmenylcholine is a substrate of purified tafazzin for transacylation with CL or MLCL, respectively. Our results suggest that plasmenylcholine, abundant in linoleoyl species, is important in remodeling CL in the heart. Tafazzin deficiency thus has a major impact on the cardiac plasmenylcholine level and thereby its functions.


Assuntos
Síndrome de Barth/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Plasmalogênios/biossíntese , Fatores de Transcrição/deficiência , Acilação , Aciltransferases , Animais , Síndrome de Barth/genética , Síndrome de Barth/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Plasmalogênios/genética , Fatores de Transcrição/metabolismo
11.
FEBS Lett ; 591(18): 2720-2729, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28686302

RESUMO

Plasmalogens, mostly ethanolamine-containing alkenyl ether phospholipids, are a major subclass of glycerophospholipids. Plasmalogen synthesis is initiated in peroxisomes and completed in the endoplasmic reticulum. The absence of plasmalogens in several organs of peroxisome biogenesis-defective patients suggests that the de novo synthesis of plasmalogens plays a pivotal role in its homeostasis in tissues. Plasmalogen synthesis is regulated by modulating the stability of fatty acyl-CoA reductase 1 on peroxisomal membranes, a rate-limiting enzyme in plasmalogen synthesis, by sensing plasmalogens in the inner leaflet of plasma membranes. Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis by altering the stability of squalene monooxygenase, a key enzyme in cholesterol biosynthesis, implying physiological consequences of plasmalogen homeostasis with respect to cholesterol metabolism in cells, as well as in organs such as the liver.


Assuntos
Plasmalogênios/biossíntese , Plasmalogênios/metabolismo , Animais , Membrana Celular/metabolismo , Homeostase , Humanos , Mamíferos , Peroxissomos/metabolismo
12.
FEBS Lett ; 591(18): 2714-2719, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28617934

RESUMO

The biosynthesis of plasmalogens in anaerobic bacteria differs fundamentally from that in animal cells. Firstly, the formation of the alk-1'-enyl ether bond in animal cells is oxygen dependent. Secondly, the first step in plasmalogen formation in animal cells is an acylation of dihydroxyacetone phosphate, which has been ruled out as a precursor in anaerobes. In bacteria the alk-1'-enyl ether bond is formed after the fully formed acyl glycerolipids are synthesized. Evidence will be presented for the conversion of the sn-1 acyl-linked chain to an O-alk-1'-enyl ether by an as yet unknown mechanism.


Assuntos
Plasmalogênios/biossíntese , Acilação , Anaerobiose , Animais , Clostridium beijerinckii/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo
13.
Methods Mol Biol ; 1595: 55-61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28409451

RESUMO

Plasmalogen synthesis can be analyzed by metabolic labeling, followed by the separation of ethanolamine plasmalogens from glycerophospholipids on one-dimensional thin-layer chromatography. The vinyl-ether bond of plasmalogens is acid-labile, which allows separating plasmalogens as 2-acyl-glycerophospholipids from diacyl-glycerophospholipids.


Assuntos
Plasmalogênios/biossíntese , Radioisótopos de Carbono , Linhagem Celular , Células Cultivadas , Etanolamina/química , Etanolamina/metabolismo , Marcação por Isótopo , Ácido Palmítico/química , Compostos de Vinila/química
14.
Mol Microbiol ; 101(2): 238-49, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27062077

RESUMO

Ethanolamine glycerophospholipids are ubiquitous cell membrane components. Trypanosomatid parasites of the genus Leishmania synthesize the majority of their ethanolamine glycerophospholipids as 1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine or plasmenylethanolamine (PME) through the Kennedy pathway. PME is a subtype of ether phospholipids also known as ethanolamine plasmalogen whose functions are not well characterized. In this study, we investigated the role of PME synthesis in Leishmania major through the characterization of an ethanolamine phosphotransferase (EPT) mutant. EPT-null parasites are largely devoid of PME and fully viable in regular medium but fail to proliferate in the absence of fetal bovine serum. They exhibit significant abnormalities in the synthesis and localization of GPI-anchored surface molecules. EPT-null mutants also show attenuated virulence in BALB/c mice. Furthermore, in addition to PME synthesis, ethanolamine also contributes to the production of phosphatidylcholine, the most abundant class of lipids in Leishmania. Together, these findings suggest that ethanolamine production is likely required for Leishmania promastigotes to generate bulk phospholipids, to handle stress, and to control the expression of membrane bound virulence factors.


Assuntos
Leishmania major/metabolismo , Plasmalogênios/biossíntese , Animais , Etanolamina/metabolismo , Etanolaminofosfotransferase/metabolismo , Etanolaminas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/metabolismo , Plasmalogênios/metabolismo
15.
J Biol Chem ; 290(48): 28822-33, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26463208

RESUMO

Plasmalogen biosynthesis is regulated by modulating fatty acyl-CoA reductase 1 stability in a manner dependent on cellular plasmalogen level. However, physiological significance of the regulation of plasmalogen biosynthesis remains unknown. Here we show that elevation of the cellular plasmalogen level reduces cholesterol biosynthesis without affecting the isoprenylation of proteins such as Rab and Pex19p. Analysis of intermediate metabolites in cholesterol biosynthesis suggests that the first oxidative step in cholesterol biosynthesis catalyzed by squalene monooxygenase (SQLE), an important regulator downstream HMG-CoA reductase in cholesterol synthesis, is reduced by degradation of SQLE upon elevation of cellular plasmalogen level. By contrast, the defect of plasmalogen synthesis causes elevation of SQLE expression, resulting in the reduction of 2,3-epoxysqualene required for cholesterol synthesis, hence implying a novel physiological consequence of the regulation of plasmalogen biosynthesis.


Assuntos
Colesterol/biossíntese , Homeostase/fisiologia , Plasmalogênios/biossíntese , Animais , Células CHO , Colesterol/genética , Cricetinae , Cricetulus , Regulação Enzimológica da Expressão Gênica/fisiologia , Células HEK293 , Células HeLa , Humanos , Hidroximetilglutaril-CoA Redutases/biossíntese , Hidroximetilglutaril-CoA Redutases/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Plasmalogênios/genética , Prenilação de Proteína/fisiologia , Esqualeno Mono-Oxigenase/biossíntese , Esqualeno Mono-Oxigenase/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
16.
J Oleo Sci ; 63(5): 527-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24770479

RESUMO

An increase in serum plasmalogens (1-O-alk-1-enyl-2-acyl glycerophospholipids), which are endogenous anti-oxidative phospholipids, can potentially prevent age-related diseases such as atherosclerosis and metabolic syndrome (MetS). Very long chain fatty acids (VLCFAs) in plasma may supply the materials for plasmalogen biosynthesis through peroxisomal beta-oxidation. On the other hand, elevated levels of saturated and monounsaturated VLCFAs in plasma appear to be associated with decreased peroxisomal function, and are a symptom of age-related diseases. To reconcile these contradictory findings, we attempted to investigate the relationship between the serum levels of saturated and monounsaturated VLCFAs, clinical and biochemical parameters, and serum levels of plasmalogens in subjects with MetS (n = 117), who were asymptomatic Japanese males over 40 years of age. Fatty acids in serum lipids were quantified using gas chromatography/mass spectrometry (GC/MS). Serum plasmalogen levels were determined by liquid chromatography using radioactive iodine (¹²5I-HPLC), and the molecular composition of serum plasmalogens was analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS). We found that MetS subjects showed a significant reduction in the proportion of specific saturated and monounsaturated VLCFAs such as behenic acid (C22:0), lignoceric acid (C24:0), and nervonic acid (C24:1) in serum lipids compared to non-MetS subjects. These VLCFAs were positively associated with serum levels of high density lipoprotein cholesterol (HDL-C) as well as plasmalogen-related parameters, and inversely with serum levels of triglyceride (TG) and small dense low density lipoprotein cholesterol (sdLDL-C). In conclusion, the proportion of nervonic acid in serum lipids is associated with serum levels of plasmalogens and with MetS, and probably reflects the peroxisomal dysfunction and enhancement of endoplasmic reticulum (ER) stress seen in common age-related diseases.


Assuntos
Ácidos Graxos Monoinsaturados/análise , Ácidos Graxos Monoinsaturados/isolamento & purificação , Lipídeos/sangue , Lipídeos/química , Síndrome Metabólica/sangue , Plasmalogênios/sangue , Adulto , Idoso , Envelhecimento , Antioxidantes , Aterosclerose/sangue , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Cromatografia Líquida de Alta Pressão , Estresse do Retículo Endoplasmático/fisiologia , Ácidos Graxos/análise , Ácidos Graxos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/prevenção & controle , Pessoa de Meia-Idade , Oxirredução , Peroxissomos/fisiologia , Plasmalogênios/biossíntese , Plasmalogênios/fisiologia , Triglicerídeos/sangue
17.
PLoS One ; 9(1): e86196, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465954

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen responsible for loss of eyesight through trachoma and for millions of cases annually of sexually transmitted diseases. The bacteria develop within a membrane-bounded inclusion. They lack enzymes for several biosynthetic pathways, including those to make some phospholipids, and exploit their host to compensate. Three-dimensional fluorescence microscopy demonstrates that small organelles of the host, peroxisomes, are translocated into the Chlamydia inclusion and are found adjacent to the bacteria. In cells deficient for peroxisome biogenesis the bacteria are able to multiply and give rise to infectious progeny, demonstrating that peroxisomes are not essential for bacterial development in vitro. Mass spectrometry-based lipidomics reveal the presence in C. trachomatis of plasmalogens, ether phospholipids whose synthesis begins in peroxisomes and have never been described in aerobic bacteria before. Some of the bacterial plasmalogens are novel structures containing bacteria-specific odd-chain fatty acids; they are not made in uninfected cells nor in peroxisome-deficient cells. Their biosynthesis is thus accomplished by the metabolic collaboration of peroxisomes and bacteria.


Assuntos
Chlamydia trachomatis/fisiologia , Peroxissomos/enzimologia , Plasmalogênios/biossíntese , Fibroblastos/microbiologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Peroxissomos/microbiologia
18.
Biochimie ; 98: 36-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24012550

RESUMO

Peroxisomes are subcellular organelles which are present in virtually every eukaryotic cell and catalyze a large number of metabolic functions. The importance of peroxisomes for humans is stressed by the existence of a large group of genetic diseases in which either the biogenesis of peroxisomes is impaired or one of its metabolic functions. Thanks to the work on Zellweger syndrome which is the prototype of the group of peroxisomal disorders, much has been learned about the metabolism and biogenesis of peroxisomes in humans. These metabolic functions include: (1.) fatty acid beta-oxidation; (2.) etherphospholipid biosynthesis; (3.) fatty acid alpha-oxidation, and (4.) glyoxylate detoxification. Since peroxisomes lack a citric acid cycle and a respiratory chain, peroxisomes are relatively helpless organelles which rely heavily on their cross-talk with other subcellular organelles in order to metabolize the end products of metabolism as generated in peroxisomes. The metabolic functions of peroxisomes in humans will be briefly described in this review with emphasis on the cross-talk with other subcellular organelles as well as the peroxisomal disorders in which one or more peroxisomal functions are impaired.


Assuntos
Transtornos Peroxissômicos/fisiopatologia , Peroxissomos/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Glioxilatos/metabolismo , Humanos , Mitocôndrias/metabolismo , Oxirredução , Plasmalogênios/biossíntese
19.
J Biol Chem ; 288(48): 34588-98, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24108123

RESUMO

Peroxisomal fatty acyl-CoA reductase 1 (Far1) is essential for supplying fatty alcohols required for ether bond formation in ether glycerophospholipid synthesis. The stability of Far1 is regulated by a mechanism that is dependent on cellular plasmalogen levels. However, the membrane topology of Far1 and how Far1 is targeted to membranes remain largely unknown. Here, Far1 is shown to be a peroxisomal tail-anchored protein. The hydrophobic C terminus of Far1 binds to Pex19p, a cytosolic receptor harboring a C-terminal CAAX motif, which is responsible for the targeting of Far1 to peroxisomes. Far1, but not Far2, was preferentially degraded in response to the cellular level of plasmalogens. Experiments in which regions of Far1 or Far2 were replaced with the corresponding region of the other protein showed that the region flanking the transmembrane domain of Far1 is required for plasmalogen-dependent modulation of Far1 stability. Expression of Far1 increased plasmalogen synthesis in wild-type Chinese hamster ovary cells, strongly suggesting that Far1 is a rate-limiting enzyme for plasmalogen synthesis.


Assuntos
Aldeído Oxirredutases/metabolismo , Metabolismo dos Lipídeos/genética , Plasmalogênios/biossíntese , Aldeído Oxirredutases/genética , Animais , Células CHO , Cricetinae , Cricetulus , Regulação da Expressão Gênica , Homeostase , Humanos , Células MCF-7 , Peroxissomos/metabolismo , Plasmalogênios/genética , Plasmalogênios/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína
20.
Lipids Health Dis ; 12: 68, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23659495

RESUMO

BACKGROUND: Alzheimer's disease (AD), the most common cause of dementia among neurodegenerative diseases, afflicts millions of elderly people worldwide. In addition to amyloid-beta (Aß) peptide and phosphorylated tau, lipid dysregulation is suggested to participate in AD pathogenesis. However, alterations in individual lipid species and their role in AD disease progression remain unclear. METHODS: We performed a lipidomic analysis using brain tissues and plasma obtained from mice expressing mutated human amyloid precursor protein (APP) and tau protein (Tg2576×JNPL3) (APP/tau mice) at 4 (pre-symptomatic phase), 10 (early symptomatic) and 15 months (late symptomatic). RESULTS: Levels of docosahexaenoyl (22:6) cholesterol ester (ChE) were markedly increased in APP/tau mice compared to controls at all stages examined. Several species of ethanolamine plasmalogens (pPEs) and sphingomyelins (SMs) showed different levels between brains from APP/tau and control mice at various stages of AD. Increased levels of 12-hydroxyeicosatetraenoic acid (12-HETE) during the early symptomatic phase were consistent with previous reports using human AD brain tissue. In addition, 19,20-dihydroxy-docosapentaenoic acid (19,20-diHDoPE) and 17,18-dihydroxy-eicosatetraenoic acid (17,18-diHETE), which are produced from docosahexaenoic acid and eicosapentaenoic acid via 19,20-epoxy-docosapentaenoic acid (19,20-EpDPE) and 17,18-epoxy-eicosatetraenoic acid (17,18-EpETE), respectively, were significantly increased in APP/tau brains during the pre-symptomatic phase, and concomitant increases occurred in plasma. Several arachidonic acid metabolites such as prostaglandin D2 (PGD2) and 15-hydroxyeicosatetraenoic acid (15-HETE), which have potential deteriorating and protective actions, respectively, were decreased in the early symptomatic phase of APP/tau mice. Significant decreases in phosphatidylcholines and PEs with polyunsaturated fatty acids were also detected in the late symptomatic phase, indicating a perturbation of membrane properties. CONCLUSION: Our results provide fundamental information on lipid dysregulation during various stages of human AD.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/biossíntese , Encéfalo/metabolismo , Proteínas tau/biossíntese , Adulto , Idoso , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Araquidônico/biossíntese , Ácido Araquidônico/genética , Ésteres do Colesterol/biossíntese , Ésteres do Colesterol/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos/metabolismo , Mutação , Plasmalogênios/biossíntese , Plasmalogênios/genética , Esfingomielinas/biossíntese , Esfingomielinas/genética , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...